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Abstract , 

Lately, the growing demand on the Intehet has prompted the need for more effective congestion 
control policies. Currently No Gateway Policy is used to relieve and signal congestion, which 
leads to unfair service to the individuafl users and a degradation of overall network performance. 
% - t ~ a w s  network simulation t o  illustrate the character of Internet congestion and its 
causes. lkmteid ' ers a newly proposed gateway congestion control policy, called Random Drop, 
aa a promising solution to the pressing problem. 

Random Drop relieves resource congestion upon buffer overflow by choosing a random packet 
from the service queue to be dropped. The random choice should result in a drop distribution 
proportional to the bandwidth distribution among all contending TCP connections, thus ap- 
plying the necessary fairness. Nonetheless, the simulation experiments demonstrate several 
shortcomings with this policy. Because Random Drop is a congestion control policy, which is 
not applied until congestion has already occurred, it usually results in a high drop rate that 
hurts too many connections including well-behaved ones. Even though the number of packets 
dropped is different from one connection to another depending on the buffer utilization upon 
overflow, the TCP recovery overhead is high enough to neutralize these differences, causing un- 
fair congestion penalities. Besides, the drop distribution itself is an inaccurate representation of 
the average bandwidth distribution, missing much important information about the bandwidth 
utilization between buffer overflow events. 

A modification of Random Drop to do congestion avoidance by applying the policy early 
was also proposed. Early Random Drop has the advantage of avoiding the high drop rate of 
buffer overflow. The early application of the policy removes the pressure of congestion relief 
and allows more accurate signaling of congestion. To be used effectively, algorithms for the 
dynamic adjustment of the parameters of Early Random Drop to suite the current network 
load must still be developed. 

Thesis Supervisor: David D. Clark 
Title: Senior Research Scientist 
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Chapter 1 

Introduction 

With the widespread use of computers nowadays comes an increasing demand on computer 

networks to provide fast cheap communication to the vastly growing research and business 

communities. As with many other aspects of technology, the high demand is driving the net- 

work load to its capacity limit, making congestion control a serious issue. Intelligent congestion 

control protocols are needed to achieve good performance in dynamic network environments 

with varying traffic characteristics. This need has recently stirred the Internet research com- 

munity to review current congestion control schemes and make suggestions for new ones that 

might be more appropriate for the growing Internet demand. 

The Internet is composed of a large number of interconnected networks of various types, 

usually called TCP/IP networks. These networks, in turn, consist of interconnected communi- 

cation and processing resource8 with fixed capacities that support user communication through 

end-bend connections. This transport level' communication is managed by the Transmis- 

sion Control Protocol (TCP) [RFC793] which functions on top of a datagram network service 

managed by the Internet Protocol (IP) @FC791], thus the name TCP/IP networks. 

TCP provides a reliable efficient communication service that is mostly transparent to the 

user. The TCP and the network resources collaborate to regulate the trafEc flow in the network 

to achieve optimal performance. TCP flow control mechanisms and network congestion control 

'According to the IS0 Open Syatema Interconnection Model, the transport level ia the fourth from the bottom 
of the layering hierarchy, lying immediately on top of the basic network kvel or service. 
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schemes are continuously being analyzed and evaluated in attempts to improve the quality of 

service provided to the user. The latest efforts by the Internet research community suggest 

a preference for a new gateway congestion control policy called Random Drop. This thesis 

is an analysis of Random Drop and its inherent strengths with the hope that the results will 

provide enlighting information to any vendors pondering its implementation in their gateways 

and helpful guidelines to future congestion control policies. 

1.1 Flow Control 

The Transmission Control Protocol was designed to function on top of a heterogeneous internet- 

work, with an unreliable datagram network service. TCP provides users with efficient reliable 

communication, while managing the data flow into the network. It employs window-based flow 

control to limit the amount of outstanding unacknowledged data under all traffic conditions, 

but it does not specify a flow control strategy to handle network congestion. 

Different TCP implementations employ different flow control measures to deal with network 

congestion. Such meaeures are also referred to as TCP congestion control mechanisms to differ- 

entiate them from TCP congestion avoidance mechanisms that attempt to prevent congestion 

from occurring. A series of TCP implementations, developed at the University of California 

at Berkley, are among the most widely installed and used. The Berkley TCP has undergone 

changes in many areas, especially flow and congestion control. The early 4.2BSD TCP con- 

tained no network congestion control measures, relying entirely on the receiver’s advertised 

window to control flow. Even though TCP allows the receiver to control the transmitter’s flow 

by advertising a smaller window, it does not specify how the network controls that flow in the 

event of congestion. 

The need for explicit congestion control measures in the Berkley TCP led to the 4.3BSD 

and 4.3BSD+ slow-start implementations. Both have adopted an explicit congestion control 

mechanism called the congestion control window cwnd. Cumd is adjusted depending on the 

network congestion level, and the TCP transmission size is the minimum of the receiver’s 

advertised window and ctond. Network congestion is signaled through packet dropping, which 

the TCPs detect using retransmit timers. The two implementations differ in their congestion 

12 
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handling and avoidance measures, such as the calculation of the retransmit timeout period, and 

the adjustment of cwnd upon congestion. The latest Berkley 4.3BSD+ slow-start TCP included 

many improvements over previous implementations [Jac88]. 

The 4.3BSD+ slow-start TCP is considered a breakthrough in congestion control and is 

expected to perform significantly better than previous implementations. Its new retransmit 

timer algorithm, which incorporates round-trip time variance estimates and exponential backoff, 

has been shown both robust [MT89] and efficient [Jac88]. Another major improvement in 

this implementation was the congestion control and avoidance algorithms. Upon congestion 

detection, Slow Start shuts the send window to control congestion and initiates a quick but 

gradual flow increase (slow start) to recover without causing big upsets to the equilibrium 

of the system. However, since the previous window size led to congestion, the new window 

is adjusted to half of the previous one to avoid repeating the congestion failure mode. This 
window adjustment may cause some valuable bottleneck bandwidth to be freed. To utilize it, 

the TCP slowly increases its window size to test the new network bandwidth limit. The TCP 

congestion control and avoidance algorithms rely on the network to signal congestion upon 

reaching this limit. 

1.2 Congestion Control 

Flow controlis a distributed measure which functions on a per connection basis in response to 

a network congestion signal. Congestion control, on the other hand, is a centralized measure 

that affects all connections contributing to a bottleneck's congestion. The gateway, which holds 

the local buffers for itself as well as its output links, detects congestion by monitoring the sizes 

of its input and output buffers 2. Congestion detection and signaling are basic functions of any 

gateway protocol; although, the approach differs from one design to another. 

The choice of a gateway congestion control policy is dependent on the basic network service 

offered and the end-bend protocol supported. These factors contribute to the amount of state 

information kept and processing overhead required. Other performance criteria that should 

'The term Congestion Control mechanism waa originally intended for the gateway but waa Iater borrowed by 
the TCP aa well. It should be preceded by 'TCP' whenever ambiguity might arise. 
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be observed are fairness in the allocation of resources to different connections, low resource 

utilization for a set of transferred data, reasonable queueing delay, and minimal probability of 

packet loss. 

Most computer networks adopt either virtual circuits or datagrams as the basic network 

service. Virtual circuits (VCs) are end-to-end connections providing reliable network service 

below the transport layer, as in IBM’s System Network Architecture (SNA) [GY82]. Like 

the transport connections, VCs require setup and termination, as well as state information 

maintenance at the intermediate gateways. Datagrams, on the other hand, are unreliable 

message carriers that require minimal setup and support overhead from intermediate gateways, 

relying on the higher transport layer to provide the necessary reliability. Datagram service 

is appropriate for heterogeneous environments supporting a variety of vendor products and 

protocols, such as the TCP/IP internetwork (Internet) [RFC791]. 

Gateway congestion control policies may require the maintenance of some state information 

for connections passing through them. The amount of state information kept should be matched 

by that required by the network service. VCs maintain a lot of state information, allowing the 

gateway protocol to have a better view of the traffic sources and better control of the congestion 

contributers. More control, though, comes at an expensive price of higher storage demand and 

setup overhead. The internet does away with the redundant reliability of the VCs for the 

flexibility of datagrams. Internet gateways keep little state information, providing minimal 

view of the congestion sources. Any state information required by the congestion control policy 

is an overhead to the Internet gateway protocol. 

Computer networks may be designed to support certain transport protocols with specific 

gateway congestion control requirements. The amount of gateway support and its required 

overhead depend on the end-to-end protocols and their flow control schemes. In SNA, the 

transport connection adjusts its transmission window size depending on the level of congestion 

flagged by the gateways, in packets flowing back to the sender. The TCP flow control mecha- 

nism, on the other hand, requires minimal network support relying on gateway packet drop as 

a congestion indication. Flexibility in the gateway design, low processing and storage overhead, 

and robustness are advantages of the TCP approach. Inaccurate congestion signaling by the 
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gateway, though, could result in unfair distribution of bottleneck capacity, as well as lowered 

over all performance. 

1.3 Gateway Congestion Control Policies 

To achieve good performance, the Internet requires a gateway congestion control policy that can 

support and complement the flow control function of the TCP. Several policies have been pro- 

posed and tested, either in real or simulated network gateways. [IETF89] describes and assesses 

some of them, including Source Quench, Fair Queueing, No Gateway Policy, and Congestion 

Indication. The shortcomings and disadvantages associated with each of these policies have 

led the IETF Performance and Congestion Control Working Group to propose a new gateway 

congestion control policy, Random Drop. 

Most Internet gateways do not employ any congestion control policy. They control traffic 

transients by buffering packets arriving while the gateway is busy. The m&mum-size transient 

that might be accommodated depends on the gateway buffering capacity. Once this capacity is 

exceeded, the gateway turns to discarding packets as a way of controlling local congestion and 

hopefully slowing down the responsible TCPs. As long as the buffers are full, it will continue to 

discard packets in the order they arrive. No policy is used to differentiate between the different 

connections and identify those that are using more than their fair share of the bandwidth. Such 

explicit policy is actually costly to implement in Internet gateways. As explained above, the 

gateways support the datagram network service, which requires minimal connection information 

maintenance. 

Random Drop is a compromise between the congestion control policies supported by the VC 

and datagram approaches. It does not require any additional state information; nontheless, it 

possesses an inherent ability to distinguish among the different connections using the gateway. 

Random Drop is intended to give feedback to users whose traffic congests the gateway, by 

dropping packets on a statistical basis. Buffered packets awaiting service have equal probability 

of being dropped, upon detecting congestion. Random Drop relies on the hypothesis ‘that 

a packet randomly selected to be dropped will belong to a particular user with probability 

proportional to the average rate of transmission of that user” [IETF89]. Dropping such packet 
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signals the appropriate user, the one currently using more than its fair share, to reduce its 

network load. Random Drop should be able to prevent misbehaving or aggressive connections 

from achieving better performance, as well as from hurting the performance of other connections. 

It is this ability to statistically differentiate between the different connections that contributes 

to the inherent fairness of Random Drop. 

Early Random Drop is a variation on the simple Random Drop aimed at avoiding congestion 

by predicting when it will occur and taking measures to prevent it. When traffic transients 

become large enough to signal imminent congestion, the gateway begins to drop packets at a 

rate that is derived from the current network congestion level. The goal of early Random Drop 

is to signal those connections, whose demand is higher than their fair share, to reduce it before 

congestion occurs. The gateway load level at which Early Random Drop should be enacted id a 

function of the users’ loads, the TCP flow rate, the end-to-end delay, and the gateway buffering 

capacity. 

1.4 Thesis Plan 

In [Jacm], Jacobson outlined the next research step, following the 4.3BSD+ slow-start TCP, 

as the “the gateway side of congestion control.” He described the desired goals of gateway 

congestion control “to control sharing and fair docation.” IETF’s proposed Random Drop 

policy seems a logical candidate for implementation in Internet gateways, if it succeeds in 

achieving its design goals. 

This thesis is an analysis of the performance of Random Drop a8 a gateway congestion 

control policy. The experimental studies are conducted using the MIT Network Simulator, 

which is described in Chapter 2. The network model underlying the experimental analysis is 

also outlined, along with the network topologies used to demonstrate the research results. 

Chapter 3 is an investigation of congestion in network environments supporting 4.3BSD+ 

SLOW START TCPs and gateways employing No Gateway Policy congestion control. These 

environments am typical of today’s networks, and the simulation studies should demonstrate 

the shortcomings associated with present congestion control policies. 
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Chapter 4 introduces simple Random Drop and evaluates its performance in several network 

configurations. The experiments are conducted in homogeneous environments consisting of well- 

behaved SLOW START TCP connections, as well as heterogeneous environments containing 

more aggressive TCP connections. The effectiveness of Random Drop in controlling congestion 

fairly and efficiently in the presence of malicious TCP implementations is a major aspect of 

the congestion control policy. The results of these experiments shall be compared to those 

obtained in Chapter 3 to assess the improvements expected of Random Drop over the current 

No Gateway Policy congestion control. 

Early Random Drop is discussed in Chapter 5. The functionality and objectives of the policy 

are described and a A crude implementation is provided to demonstrate the important aspects 

of Random Drop. This chapter does not actually attempt to develop an efficient implementation 

of the policy but rather to show its promising strengths, laying some grounds for further research 

on the topic. 

The thesis results are summarized in Chapter 6. The shortcomings aseociated with Random 

Drop will be highlighted to explain why the policy fails to achieve the proposed goals. The 

datagram network service underlying these congestion control policies is reexamined and sug- 

gestions are made for more intelligent network services and corresponding congestion control 

protocols. 
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Chapter 2 

The Simulation 

2.1 Network Model 

2.1.1 The Network 

A computer network consists of n intercon cted set of communication and switching de- 

ments. The switches, also known as gateways, route packets to their designated destinations by 

switching them from the input links, on which they arrived, to their appropriate output links. 

Each gateway is equipped with input and output buffers to accommodate transient traffic and 

prevent it from congesting the gateway or its output links. 

Since Random Drop was proposed as a quick solution to the congestion problems that the 

Internet is likely to face in the near future, it is only reasonable to adopt a network model that 

reflects this intention. The Internet consists of a collection of local and wide area networks, 

that are interconnected through gateways. Local area networks use fast multi access links to 

provide communication over small geographic areas; while, wide area networks are composed 

mostly of slow point-to-point links that can provide national and cross-continental communi- 

cation. Because they are the alowest network components, point-to-point links can lead to 

network congestion whenever the demand on them exceeds their capacity. The heavy demand 

manifests itself as long queues at gateway output buffers corresponding to the bottleneck links. 

In the worst case, the continually increasing demand exhausts the buffers and leads to network 

congestion. 
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The network model employed here will emulate these aspects of the Internet, with strong 

emphasis on network environments susceptible to congestion problems. The network service un- 

derlying the model is an unreliable datagram service with minimal state information maintained 

at the gateways. The network attempts to deliver user packets but without any guarantees, 

relying on the transport layer to recover from resulting errors or failures. 

2.1.2 The Connection 

The network model described will support end- to-end communication through transport level 

TCP connections. In principle, this includes all implementations conforming to the TCP spec- 

ifications. Nonetheless, the experimental analysis conducted below will emphasize the Berkley 

4.3BSD+ SLOW START implementation because of its highly developed and used flow control 

algorithms, which directly influence current Internet congestion problems. 

2.1.3 The User 

The term user will generally refer to any entity communicating over the network through a 

TCP connection. Although a bulk-data transfer model of the user will be used to simplify the 

experimental analysis, the research results should apply to any user. 

2.2 The Simulator 

The research experiments are conducted using the MIT Event-Driven Network Simulator. This 
is a general simulation tool that allows the implementation of any integrated set of components 

that interact through the exchange of events. The set of components used are users, TCPs, 

hosts, switches, ethernets, and point-to-point links. 

The MIT Network Simulator models a dynamic network environment through the imple- 

mentation of dynamic TCP connections. TCP connections are configured to have fuced users 

and routes. Nonetheless, their opening times and dat&burst sizes may be chosen dynamically 

using a random number generator. As in real networks, the range of the datiLburst size and 

the time between consecutive bursts are parameters of the sending user. 
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2.2.1 USER 

A USER pair simulates logical communication through a TCP connection. The data burst size 

may be fixed or randomly generated with random spacing between consecutive bursts. The 

USER’S burst size and frequency ranges together control the network dynamics. A USER can 

also have an infinite burst size simulating bulk-data transmission, as with File Transfer Protocol 

(FTP) users. 

2.2.2 TCP 

A TCP component pair simulates the two ends of a TCP connection, each of which is associated 

with a USER. The TCP is a simplified implementation of the actual TCP specification which 

simulates only the data transfer state of a connection. It can emulate the Berkley 4.2BSD, 

4.3BSD, or 4.3BSD+ implementations, as well as a hybrid version of 4.2BSD and 4.3BSD+, 

that will be described later. 

2.2.3 HOST 

A HOST simulates the physicd component on which a TCP may reside. Its input and output 

buffers help sustain traffic transients destined to itself or its output links, minimizing network 

congestion. The buffers sizes might be finite or infinite, simulating very large buffers. Besides 

the queueing delays that packets incur awaiting service, the gateway contributes additional 

transmission delays, both on per-packet and per-byte basis. 

2.2.4 SWITCH 

A SWITCH component is similar to a HOST, except that it may only connect links together, 

not a TCP and a link. 

2.2.5 PPLINK 

A PPLINK is a point-to-point link. Associated with it are transmission and propagation delays, 

as well as an error probability used to simulate data corruption. 
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2.2.6 ETLINK 

An ETLINK is an ethernet, characterized by short transmission delay and negligible propaga- 

tion delay. 

2.3 Performance Metrics and Analysis Tools 

The experimental analysis conducted here relies on different performance measures and anal- 

ysis tools to demonstrate its conclusions. Each simulation component is equipped with status 

indicators of its internal operation and performance. These indicators allow the assessment of 

performance from both the network and end-user frames of reference. 

The TCP has a partial view of the network, that is, each TCP connection knows only about 

its own behavior and nothing about the others. Nonetheless, a TCP has enough information 

about itself to assess many aspects of its own performance. The simulation TCP components 

keep track of their throughputs, retransmission percentages, and end-to-end delays. These 

distributed parameters are important metrics for analyzing the interaction of the TCP and 

network congestion control schemes and evaluating their performance. 

The TCP frame of reference, though, has a limited view of the network and usually has 

to make intelligent guesses about its current state. The network components, on the other 

hand, have a complete local picture of all network tr&c. Thus, they are capable of collecting 

performance data about al l  connections concurrently and comparing it. Of course, this is much 

easier in the simulator than in red networks, since it is not restricted to the limited capabilities of 

actual network components. For example, one of the most important performance metric8 here 

is the bandwidth distribution of a bottleneck network component among connections sharing 

it. A simulation component can collect and maintain data about the different connections that 

allows it to calculate its bandwidth distribution, whereas an analogous real component currently 

keeps insufficient, minimal state information. 

The performance data gathered by the simulation network components can be collective 

or per connection. For example, both gateways and point-to-point links calculate their overall 

bandwidth utilizations, buffer utilizations, and packet drop percentages. They also calculate 
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these metrics for each connection using them, which provides sufficient data to evaluate the 

distribution of the capacity and assess the fairness of its allocation among users. 

The simulator is equipped with graphical analysis tools to display gathered data over time. 

Performance data about several connections sharing a resource can be represented on one graph 

using colors to differentiate them'. Figure 4-10, for example, shows the bandwidth distribution 

among six connections sharing one link2. Similar graphs illustrating buffer distribution and 

packet drop percentages are shown in figures 4-9 and 5-2. It is also possible to illustrate the 

flow patterns of the distributed TCPs by graphing their packet sequence numbers over time. 

Figure 4-7 depicts such a graph for a 4.3BSD+ TCP that SLOW STARTS after packet loss. 

2.4 Network Topologies 

The simulation experiments conducted below require a variety of network environments to 

demonstrate their conclusions. Two of those topologies are general enough to be used to 

illustrate several thesis results and thus are described here for ease of reference. The experiments 

describe the network environments in further detail and justify the topologies chosen. 

Figure 2-1 illustrates a fairly symmetrical network topology supporting 10 TCP connections. 

This is not a realistic topology but the symmetry will prove very useful in comparing the 

bandwidth utilizations achieved by equal demand users, which is central to assessing the fairness 

of Random Drop. The US-pplink represents a slow cross-continental link with high propagation 

delay. It is the bottleneck of the network, the one whose capacity is heavily contended for by 

all connections. 

Figure 2-2 models a more realistic long-haul network supporting 14 TCP connections. There 

is one main long route along which most connections communicate. There are also a few connec- 

tions with shorter paths crossing the main route, simulating cross traffic that is characteristic of 

'Due to the limited number of cdoa  a d a b l e  to the printer, different connections might sometimer have to 
be reprerented using the same color. Fortunately, thio does not o h e  the illustrated mults. 

'The bandwidth distribution b cddated  over consecutive fixed time periods. New vduer may be merged 
with old values using a smoothing function to illustrate long-term performance. For clmoothed and average 
bandwidth graphs, numerical figures of the bandwidth are ae0 included dong with the graph's color keys. 
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real gateways. Due to the varying paths of the connections, the network has several bottlenecks 

corresponding to central point-to-point links that are receiving heavy traffic. 

The transmitting and receiving ends of each TCP connection and its associated USER and 

HOST are labeled 'a' and 'b', respectively. The connections are configured for one-way data 

transmission to simulate the nature of bulk-data transfer chosen to model the users. 

The network components have self-explanatory names and their speeds are characteristic of 

real Internet components. Point-to-point links and ethernets run at typical transmission speeds 

of 56Kbits/sec and IMbitlsec, respectively; whereas, switching occurs at reasonable delays of 

lms per packet plus lms for each byte. Other component parameters are chosen appropriately 

to achieve the desired network load. 
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Figure 2-1: Network Topology I 
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Figure 2-2: Network Topology I1 
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Chapter 3 

Network Congestion 

Computer networks are very dynamic environments supporting user traffic of different char- 

acteristics and demands. The strong dynamics make it very difficult to predict the maximum 

network load and allocate enough capacity to service it. Instead, the network resources are 

equipped with enough capacity to handle reasonable traffic loads, along with congestion control 

mechanisms to protect themselves from excessive user traffic. The growing demand on com- 

puter networks has increased the importance of efficient congestion control schemes, that react 

quickly to sudden changes in traffic characteristics. The SLOW START flow control medm 

nism implemented in the 4.3BSD+ TCP was such an effort to enact quick but controlled TCP 

congestion control and recovery. This chapter discusses the interaction of the SLOW START 

TCP with the present IP gateway congestion control scheme, that employs no dropping policy. 

The objective is to analyze their behavior in heavily utilized environments that are susceptible 

to congestion and demonstrate the phenomena contributing to it. 

Network resources have limited capacities which may be exceeded by user demand. In such 

cases, the resources can accommodate finite traffic transients in their local buffers until they are 

processed. If the transients last long enough, though, they will exhaust the bottleneck’s buffers 

causing them to overflow and the resource to get congested. Thus, network congestion is caused 

by the aggregation of user traffic (data packets) awaiting the service of one or more bottleneck 

resources. The study of this aggregation or clustering effect is fundamental to understanding 

the nature of network congestion. 
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In the TCP/IP networks, the clustering effect is evident as several different phenomena 

that may occur separately or concurrently. Packet clusters may form among packets belonging 

to the same TCP connection or packets from different connections. To distinguish between 

them, the first will be c d e d  Local Packet Clustering (LPC) and the second Global Packet 

Clustering (GPC). The LPC phenomenon is a consequence of the TCP transmission strategy 

used to regulate the flow of packets within an individual window. Windows provide little control 

over the flow rate of individual packets, allowing them to cluster. Even the additional control 

exercised by the latest Berkley SLOW START transmission strategy is not sufficient to prevent 

LPC. 

More substantial packet clustering arises aa an aggregation of packets of many connections 

at a bottleneck resource. This Global Packet Clustering is observed as two separate phenomena 

caused by different factors. Lossless GPC occurs in network environments with bottlenecks 

characterized by high processing delays but few packet drops. Such environments rely heavily 

on network buffering to increase throughput, even at the expense of high queueing delay. Slow 

bottleneck resources cause packets to queue up awaiting service. The long queues encourage 

other packets to join them, reducing their inter-packet distances and clustering them together. 

This effect usually involves most connections using the bottleneck, which causea their flows to 

synchronize. Since this occurs during each round-trip around the network and through the 

bottleneck, the synchronization wil l  reoccur each time, causing the traffic to oscillate between 

being queued at the bottleneck and being transmitted by the TCPs. The significance of Lossless 

GPC depends on the processing delays and corresponding loads of network resources. 

Another type of GPC is usually seen in networks characterized by small buffering and 

susceptible to heavy packet losses. This Lossy Global Packet Clustering behavior results when 

the demand on a resource exceeds its capacity causing incoming packets to queue up awaiting 

service. If such traffic transient lasts long enough, it will overfiow the available buffers and 

congest the resource. This GPC effect should not persist because the resource will signal the 

TCPs to slow down and control their flow. Due to the dynamic nature of networke, though, 

the TCPs are designed to test the current network load limit by slowly increasing their flow 

back up until some congested resource tells them to slow down again. Thus, the TCP oscillates 
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between flow control to relieve congestion and flow maximization to improve throughput. The 

resulting effect is that the global packet clusters will continue as long as the total user demand 

exceeds the capacity of some shared resource. Generally, Lossy GPC has a more pronounced 

effect than other clustering phenomena, because it usually involves many connections using the 

bottleneck resource, subjecting them repeatedly to packet losses and performance penalities. 

3.1 Local Packet Clustering 

The aggregation of packets from one TCP connection in the buffers of a bottleneck resource is 

termed Local Packet Clustering. LPC is very closely related to the TCP transmission strategy, 

which is implementation dependent. Unlike windows, which are a TCP specification, trans- 

mission strategies vary from one TCP implementation to another depending on the designer’s 

philosophy. Some of the widely used transmission strategies are those implemented by the 

Berkley TCPs, particularly the latest SLOW START. SLOW START is considered a break- 

through in flow and congestion control with several improvements over previous transmission 

strategies. Nonetheless, SLOW START suffers from a problem familiar to many other strate- 

gies, little control over individual packet flow within a window. This shortcoming of SLOW 

START contributes to an LPC effect in networks employing it to control end-to-end data flow. 

Fortunately, the network resources impose delays on the service of packets, which effectively 

disperse clustered packets after a few windows. This dispersion effect helps SLOW START 

TCPs overcome LPC, softening its long-term effect on the network. 

3.1.1 Network Delays 

As packets travel through the network, they experience queueing, transmission, and propagation 

I delays. Bottleneck resources have two opposite effects on the packet flow characteristics, one 

associated with incoming packets and one with outgoing packets. Packets arriving at a busy 

resource join its input buffer queue. The larger the queue, the higher the probability of a packet 

arriving while the resource is busy and pining the queue. Thus, the queueing delay reduces 

interpacket separation, encouraging packet clustering at the input buffers. 

On the other hand, processing delays at the resource (i.e. transmission delays) insure at least 
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a 1-packet processing delay separation between consecutive outgoing packets. This interpacket 

separation results in a dispersion effect that spreads apart any packets previously clustered at 

the input buffer of the resource. The combined effect of the queueing and processing delays is 

that the resource can not usually maintain the original interpacket distance, but it can guarantee 

at least a 1-packet processing delay separation. 

3.1.2 SLOW START Transmission Strategy 

The TCP SLOW START transmission strategy has been adopted because of its effectiveness 

in reducing congestion by gradually merging a newly opened connection or a retransmitting 

connection with the current network traffic [Jac88]. Previous Berkley TCP transmission strate- 

gies, such a8 4.2BSD and 4.3BSD, may transmit full-size windows all at once upsetting the 

equilibrium of the network and congesting the bottleneck resources. SLOW START opens the 

TCP sending window exponentially up to a certain threshold, then linearly until it reaches its 

maximum limit. The exponential sizing is adopted for the TCP to quickly reach equilibrium, 

followed by the linear sizing for slow probing of the current network load limit. The threshold 

separating the exponential and linear sizing regions is dynamically adjusted depending on the 

network congestion level. Upon detecting buffer overflow, the TCP deduces that some bottle- 

neck resource could not handle its current network load (window size) and that it should slow 

down. Since the resource was able to handle half of the current window size, the threshold is 

readjusted to that safe limit. Beyond this threshold, the TCP will advance slowly (linear sizing) 

avoiding congesting the bottleneck resource again. 

Exponential window sizing is achieved by increasing the window size by one packet for each 

acknowledgement received, assuming each data packet generates one acknowledgement. Thus 

for each acknowledgement received, the window is opened by two packets, one for the acknowl- 

edged packet and one for the new increment. If user data is always available for transmission, 

the TCP connection will immediately proceed to send a burst of two packets. Even though the 

individual packets of a window get dispersed by the delays of network resources, these s m d  

bursts can fill the gaps between consecutive packets in the following window, causing them to 

cluster at the next bottleneck. This LPC effect lasts until exponential sizing ceases, allowing 

the network dispersion effect to take over and restore smooth TCP data flow. 
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I 3.1.3 LPC Simulation Results 

Because the LPC effect is local, that is it affects each flow separately, it does not pose any 

big threats on its own. Nonetheless, it is important to realize its existence, as it might prove 

significant when coupled with other network phenomena, such as Global Packet Clustering that 

will be described in the next section. 

LPC will be illustrated by observing the data flow pattern of a typical TCP connection while 

SLOW STARTing. For this purpme, topology 11 of Figure 2-2 provides a realistic example 

of a long-haul TCP/IP network with several intersecting flows. Figure 3-1 focuses on the 

transmission pattern of tcp-2a during a typical user data burst. The SLOW START TCP 

begins transmission by sizing up its window exponentially until the maximum size is reached. 

The exponential window size adjustment is illustrated by the small 2-pkt bursts described above. 

Each window transmission consists of a string of 2-pkt bursts that grows exponentially in size 

yielding aggregates of 1, 2, 4, 8, and 16 packets '. These aggregates correspond to the Local 

Packet Clusters that form at the inputs of bottleneck resources during the exponential window 

sizing phase of TCP flow control. 

After the TCP window has reached its maximum size of 1600 bytes, its transmission pattern 

seems to take on a new character. The packet flow becomes almost regular with nearly equal 

inter-packet spacing. The dispersion of packets is due to the processing delays of network 

resources. It is less apparent at the beginning of the transmission, because the effect is obscured 

by the 2-pkt bursts that form the exponential window sizing. Once the SLOW START phase 

is over, the Local Packet Clustering effect seizes giving way to the network dispersion effect to 

smooth out the traffic fluctuations. Thus, the processing delays of network resources work to 

regulate the TCP flow acting as an embedded rate control mechanism. 

I 

The significance of the LPC effect depends on the dynamics of the network and the avail- 

ability of buffers to accommodate traffic transients at bottleneck resources. Those two factors 

determine how often the TCP needs to activate its SLOW START mechanism which results in 

'In thin experiment, the TCPI were configured to have maximum window dzea of 1600 byks and packet &ea 
of 100 byks. 
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Local Packet Clustering. Only the effect of the first factor is explored here because it is easier 

to isolate and illustrate. The effect of buffer size on congestion will be illustrated in the next 

section. 
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3.2 Lossless Global Packet Clustering 

3.2.1 Network Delays 

In the previous section, the effects of delays imposed by network resources on packet flow char- 

acteristics were described. Processing delays were shown to have a positive dispersion effect 

on outgoing packets, which counteracts the effect of Local Packet Clustering. Unfortunately, 

processing delays have another negative influence on incoming packets, which could prove sig- 

nificant under the right conditions. 

If a network resource has high processing delay and is receiving heavy traffic, then packets 

are likely to queue up frequently at its input. The more packets we queued up, the higher is 

the probability of packets arriving while the queue is busy and joining it. Thus, long queues 

attract packets to joining them, clustering them together and destroying their original inter- 

packet separation. Moreover, this effect feeds upon itself since the longer the queue, the more 

packets it attracts, and the longer it becomes. This causes each connection to oscillate between 

idleness, while its packets are queued up at some bottleneck, and near full utilization, when all 

the acknowledgements arrive allowing the transmission of a whole new data window. Since this 

effect is global, involving most connections using a bottleneck resource, it works to synchronize 

the flow patterns of all connections involved. Furthermore, it continues to resynchronize them 

after each round-trip, effectively aligning their flows to yield network-wide oscillations. 

3.2.2 Lossless GPC Simulation Results 

Topology II of Figure 2-2 is used to demonstrate Lossless GPC. Network resources are equipped 

with infinite buffering capacity simulating very large buffers. The 56 Kbit/sec point-to-point 

links represent the network bottlenecks with high processing (transmission) delays. Figure 3-2 

illustrates the queue length for packets in the output buffers of SAC-GWawaiting transmission 

on ppZink3. With a 16-pkt window per connection and a total of 12 connections, the oscil- 

lation peaks of 45-60 packet amplitude demonstrate an aggregation of packets belonging to 

several flows. Moreover this packet clustering repeats regularly and indefinitely supporting a 
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synchronization of network flows over long time periods 2. 

The significance of the Lossless GPC effect depends on the processing delay of the bottleneck 

resource and the total demand on it. These parameters determine the amplitude of the resulting 

oscillations. Moreover, Lossless GPC is supported by the failure of TCP to exercise rate control 

over the flow of its individual packets. Thus, a packet cluster that develops in the buffers of 

some bottleneck resource will produce a cluster of acknowledgements generated by the receiver, 

followed by a cluster of new data packets generated by the sender. Current TCP/IP networks 

lack an explicit mechanism that would work to break such vicious packet clusters as they travel 

indefinitely around the TCP connection loop. 

'All the connections in this experiment have opened at different tima during the fust half second and 
continued transmitting indefinitely with maximum round-trip delays of 1.5 second. 
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Figure 3-2: Output queue length for SAC-GWin the ppZink3 direction 
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3.3 Lossy Global Packet Clustering 

Another Global Clustering effect occurs in network environments characterized by limited 

buffering and correspondingly reasonable queueing delays. Lossy Global Packet Clustering 

(GPC) is a product of the interaction of the gateway and TCP congestion and flow control 

mechanisms in heavily utilized network environments. These mechanisms are designed to con- 

trol network congestion while maintaining a high utilization of the resources. Pursuing a bal- 

ance between these two conflicting objectives, though, can lead the network into an oscillatory 

behavior between congestion recovery and utilization optimization. This behavior translates 

itself into oscillations in the load of bottleneck resources, seen through their input queue sizes. 

Moreover, the gateway congestion control policy seems to have a synchronizing effect on the 

transmission patterns of TCP connections, which leads to synchronization of the connections 

LPC effects. This works to increase the burstiness of the load on the bottleneck resources 

making things even worse. 

3.3.1 Gateway Congestion Control 

The gateway congestion control mechanism is a combination of two schemes, local buffering 

and packet discarding. Heavy transient traffic is controlled through buffering packets arriving 

while the resource is busy. The maximum-size traffic transient that might be handled through 

buffering depends on the size of the gateway buffering capacity. Once this capacity is exceeded, 

the gateway turns to discarding packets, as a way of controlling local congestion and hopefully 

slowing the TCPe down. As long aa the gateway’s buffers are full, it will continue to discard 

packets in the order they arrive. In doing so, the gateway is relying on the TCPs to detect 

congestion and take measures to control their flow and recover from any losses they might have 

incurred. 

3.3.2 TCP Congestion Avoidance 

The TCP has been designed to detect network congestion through the use of retransmission 

timers. If the TCP does not receive an acknowledgement for a packet after a certain time of 

its transmission, it assumes that the packet was discarded by some congested resource on its 
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path. Upon detecting this loss, the TCP activates its congestion control mechanism, that is 

exponential window sizing, to reduce network congestion and recover from its losses. Once 

congestion is controlled, the TCP attempts to optimize its performance by maximizing the 

throughput while avoiding congestion. Congestion avoidance is achieved through linear window 

sizing which slowly increases the throughput until the TCP load reaches its limit. The TCP 

traffic load is restricted statically by its window boundary and dynamically by the current 

network load. When one of the congested gateways, on the path of a TCP connection, exhausts 

its buffers and begins to discard packets, then the network imposes a dynamic limit on the 

connection’s load. This load is a function of the number of connections using the congested 

gateway and their aggregate network load. Linear window sizing optimizes performance by 

increasing the TCP throughput until the static or dynamic limit is reached. 

3.3.3 High Network Demand 

The capacity of a network is limited by the capacity of its resources. When the demand on 

the network exceeds the capacity of some bottleneck resource, packets from the connections 

passing through that resource aggregate at its input buffers. This Global Packet Clustering 

effect, caused by the high network demand, is inevitable in a dynamic network environment, 

and the gateway and TCP are equipped with effective meaeuree to control it quickly. 

The congestion control mechanisms used in the TCP/IP networks often provide powerful 

control of congestion. Unfortunately, their effect seems to be short laeting. In a heavily utilized 

environment, heavy network load often leads to congestion. Even though the TCP and gateway 

succeed in relieving it and recovering from the loss, they are not designed to remember any 

information about the congestion failure. Following each congestion recovery, the TCP slowly 

probes the network load limit until it reaches it, forcing the network into another congestion 

failure. Thus, the interaction of the gateway congestion control and TCP congestion avoid- 

ance mechanisms causes the TCP to oscillate between congestion recovery and performance 

optimization. 
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3.3.4 Lossy GPC Simulation Results 

Topology I1 will be used again to demonstrate Lossy GPC. In this experiment, though, network 

resources are equipped with finite buffering capacity, which is frequently exceeded by the heavy 

user demand. Figure 3-3 shows the buffer distribution for ppZinkS in the SAC-GW - UWISC- 

GW direction. PpZinkSs service queue seems to fluctuate between full buffer utilization and 

idleness quite regularly. Considering the fact that user demand is constant over the entire graph 

time period, these fluctuations support the hypothesis of oscillatory TCP flow pattern. Such a 

typical pattern is illustrated in Figure 3-4. The oscillatory TCP flow character exerts uneven 

load on network bottlenecks encouraging packet clustering. Moreover, each SLOW START, 

shown in the figure, is accompanied by an LPC effect which only increases the load on the 

bottlenecks and any potential clustering in their input buffers. 

Besides the oscillatory character of each TCP data flow, the large-amplitude oscillations of 

ppZink3's queue support some synchronization of these flows. Just as in the previous section, 

bottleneck queueing delays have led to the synchronization of the data flows of several TCP con- 

nections, the gateway congestion control mechanism seems to induce a similar effect. Whenever 

a congestion failure occurs, several connections are hurt in the congestion control process. The 

overlap of data flows from several connections coupled with the first-come-first-drop gateway 

congestion control mechanism will typically cause several connections to lose. All connections 

hit during the drop will activate a SLOW START following the retransmission timeout, in the 

process aligning their data flows. It is this synchronization of several flows that is responsible 

for the large oscillations and significance of the Lossy GPC effect. The application of no drop 

policy by the gateway congestion control mechanism causes connections to be penalized blindly 

without concern to who is really contributing to the bottleneck's overload. 
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Chapter 4 

Random Drop 

The Internet is expected to face significant congestion in the next couple of years, which 

prompted a review of the current congestion control policies. Remote file systems and per- 

sistent name resolvers are some examples of large contributers to the Internet traffic, which are 

expected to consume a large portion of the available bandwidth [Man89]. Since the need is for 

the near future, any potential congestion control policy should be easy to add to existing Inter- 

net gateways. The appeal of the proposed Random Drop policy follows from its implementation 

simplicity, its conformance with the layering hierarchy and datagram network service, and its 

strong potential to provide the much needed congestion control. 

Random Drop was proposed to provide both congestion control and avoidance functions 

to network gateways. This chapter focuses on the congestion control aspect of Random Drop, 

while congestion avoidance is discussed in Chapter 5. The Random Drop congestion control 

policy is intended to reduce the congestion at a bottleneck resource by identifying users that are 

consuming more than their fair share of the available capacity and signaling them to reduce their 

network load. User demand on the bottleneck capacity is identified implicitly through statistical 

approximation. Random Drop relies on the hypothesis that the distribution of available buffers 

at a bottleneck resource reflects the distribution of its capacity among the different users. 

That is, the percentage of buffers occupied by a particular user is proportional to the average 

transmission rate of that user. Therefore, a buffered packet selected randomly to be dropped 

will belong to a particular user with probability proportional its average transmission rate. 

41 



Users that attempt to consume more than their fair share of the capacity will also consume 

a larger percentage of the buffers and thus see a higher drop probability. It is this inherent 

ability to distinguish between the demands of the different users and signal only those that are 

contributing to the congestion that makes Random Drop an attractive policy. 

Random Drop is also viewed aa an improvement to No Gateway Policy packet dropping 

when the collective demand on a bottleneck resource is large enough to overflow the available 

buffers. When No Gateway Policy is employed, packets arriving at a congested resource see 

full buffers and are dropped exactly in the order they arrive. Since traffic of different users 

is not necessarily uniformly intertwined, the percentage of packets dropped that belong to a 

particular user may not reflect that user’s buffer utilization. It is possible that a cluster of 

packets belonging to one user, one that is using less than its fair share of the capacity, arrive at 

a congested resource just in time to overflow its buffers. The well-behaved user ends up paying 

for the misbehavior of some other users. Intuitively, Random Drop should only do better than 

No Gateway Policy a8 far aa distributing the available capacity fairly among the users. 

Having described the inherent characteristics and goah of Random Drop, this chapter pru- 

ceeds to verify its underlying assumptions and assess its performance in various network envi- 

ronments. The fairness of Random Drop in penalizing the congestion contributers will be the 

focue of the analysis. Accurate identification of the congestion contribnters should also yield 

more efficient overall behavior. The chapter concludes with a comparison of the performance 

of Random Drop to that of No Gateway Policy congestion control to assess the feasibility of its 

incorporation in existing Internet gateways. 
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4.1 Performance Criteria 

4.1.1 Fairness 

Besides its vague qualitative meaning, fairness has several quantitative definitions [JCHW, 

RCJ871. The fair allocation of resources depends largely on the users’ demands. The simplest 

scenario is when the users have equal demands entitling them to equal shares of the capacity. 

In reality, though, there are different classes of users with varying network demands. Fair 
allocation in such situations is very tricky and difficult to provide by a mere modification of the 

congestion control policy. More fundamental changes to the network service model are required 

to provide different qualities of service as requested by the user [Zha$9]. In the Internet, support 

for unequal shares of the resources would have to be provided by a separate protocol that relies 

on an equal-share network service. 

Assessment of the fairness of Random Drop shall be baaed upon equal-share fair docation; 

that is, whatever the demands of the users are, they axe entitled to equal shares of the network 

capacity. Any excess unused capacity is free to be grabbed by any user requiring it, until it 

is needed by a user whose demand is below his fair share. This definition of fair allocation is 

compatible with that which Random Drop promisee to deliver. Users are allowed to consume 

the resources capacity any way they wish aa long aa they do not exceed it. If they do, Random 

Drop wil l  statistically hamper those connections whose demand exceeds their fair share capacity. 

The connections should then reduce their network load, returning some of the capacity back to 

its lawful owners. Remember that Random Drop is a statistical policy, so that this behavior 

manifests itself more! clearly over longer time periods in which the effect of traffic transients has 

diminished. 

4.1.2 Power 

Network performance is optimized by maximizing the total throughput and minimizing the 

average queueing delay at bottleneck resources. Since these are two conflicting criteria, a 

compromise between them is often taken as the most optimal objective. Powr  is one such 
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metric that models the trade-off between throughput and delay. It is defined as 

throughput 
delay 

Power = a x 

[Kle79, IETF891. Thus, from the network point of view, it is considered desirable to maximize 

the power for all network resources; nontheless, in reality this is probably impossible due to the 

conflicting needs of different resources. 

Optimal network performance, though, does not necessarily guarantee good performance to 

individual TCP connections. Besides the need for fair allocation of network resources among 

the users, it is also important to minimize the retransmission rate of their data. Only by doing 

so, can the network capacity be efficiently utilized. Maximizing the resource capacity spent 

transmitting real user data (rather than retransmitting old data) would insure that the ends 

will also achieve high throughput. The low network queueing delay combined with the high 

user throughput should then produce the desired user power. 

As explained in Chapter 3, TCP/IP networks are subject to load oscillations due to packet 

clustering phenomena. Needless to say, these oscillations are very undesirable, as they result 

in high queueing delays, high retransmission rates, and reduced throughput. Ideally, networks 

should have bottlenecks with average buffer utilization of 1 packet, including the one that is 

being processed. This would imply maximum utilization of bottleneck capacity at no queueing 

delay expense. 

A more realistic objective, though, is to aim at keeping the resource queueing fairly short 

and stable. Obviously, this should reduce the queueing delay and increase the utilization of 

network bottlenecks. Moreover, decreasing the burstiness of network traffic should lessen the 

danger of buffer overflow and the resulting retransmissions. 

The assessment of Random Drop’s performance will be only qualitative, aiming to  determine 

whether it has the sound assumptions and behavior needed to fulfill the performance criteria 

outlined. Random Drop’s promise to identify and penalize only the user8 contributing to 

‘a L a variable that rei& the relative importance of throughput versus delay. A d u e  of 1 L chosen if 
equd emphasia L placed on both criteria. 
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network congestion means that substantial variations in queue size result from the slowing 

down of aggressive users only. This would protect the good users, keeping their retransmission 

rates low and their throughputs high. To maintain low queueing delays, buffers of 'reasonable' 

size are recommended. SLOW START TCPs ate designed to continuously test the limits of 

their networks, and they do that by dynamically increasing their window sizes until the buffers 

of some bottleneck overflow, signaling them to slow down. Thus, large buffers can incur high 

queueing delays, while small buffere result in too many retransmissions. 

To summarize, the ability of Random Drop to implicitly identify and control the traffic of 

each network user is the most critical performance criteria. It is the one that will decide how 

well Random Drop will perform as far as the other criteria are concerned. 
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4.2 Performance Assessment 

Since Random Drop was proposed, there have been arguments in its favor and arguments 

against it. The experiments included here do not necessarily represent a conclusive test of its 

performance, but they do demonstrate some of its strengths as well as some of its shortcom- 

ings. The objective of these simulation experiments is to become familiar with the nature and 

behavior of Random Drop, and how it fits in the current network model. 

4.2.1 Benefits of Random Drop 

Computer networks are event-driven systems, whose behavior is the outcome of a succession of 

events that activate each other in some regular fashion. A repeated sequence of events, that 

may result from such regularity, can cause the network to be locked into one stable pattern 

that might be disadvantageous either to it as a whole or to the individual connections. To 

counteract this negative stability, some randomness can be injected into the network to break 

up the regular chain of events that could lead to an unfavorable outcome. It is this aspect 

of Random Drop that waa believed to be a strong improvement over the current No Gateway 

Policy congestion control. The following experiments will demonstrate the randomness effect 

on network flow patterns. 

In al l  of the experiments conducted in this chapter, the user8 of the TCP connections were 

chosen to emulate FTP users, which are actually simulated by infinite demand sources. Such 

users impose equal demands on the network, simplifying the Random Drop analysis. Moreover, 

the results obtained below will make it unnecessary to test Random Drop in the presence of 

unequal demand users. 

The network environments described by the experiments in this section require some of their 

flows to be able to stabilize. In order for this to occur, a TCP connection must have a static 

window size small enough to be accommodated within the buffers of any network resource. The 

intuition behind this choice will become clear as the network scenarios are described below. 
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4.2.1.1 Experiment 1: Identical TCPs with Different Open  Times 

Network environments are usually characterized by random connection establishment and clear- 

ing. In such environments, connections that start earlier and manage to stabilize their flows 

might be at an advantage compared to connections that are attempting to join some already 

started and stable set of flows. In a network characterized by scarce resources, there is a danger 

of some s m d  set of flows grabbing most of the resources while the other flows fight over the 

leftovers. 

Topology 111 of Figure 41 describes such a network scenario. It consists of two identical 
I 
I TCP connections competing for the capacity of a bottleneck point-tepoint link, PPLINKI. 

The link has a buffering capacity that can accommodate 40 packets, while each connection 

has a maximum window size of 25 packets. The network end-bend delay is short enough to 

cause most packets to be queued up at the bottleneck. This is where the problem arises, since 

PPLINKl’s buffers can not hold the packets of of both connections combined, the two will have 

to contend for the resources. Nevertheless, the connection that opens first has a head start on 

the contention. 

With No Gateway Policy employed while dropping packets to relieve congestion, whoever 

arrives while the buffers are full will be penalized. Since the first connection has already started 

and is holding a fixed share of the available buffers, any of its packets that leaves the bottleneck 

will be shortly replaced by a new data packet. On the other hand, the second connection will 

try to open its window and stabilize, but meanwhile will force the buffers to overflow and be 

penalized for the congestion. This behavior is clearly illustrated in Figure 4 2  showing the buffer 

distribution for PPLINKI in the GWI - GW2 direction. TCPIA, which opens f is t ,  occupies 

a fixed portion of the available buffers while TCP2A oscillates continuously in an unsuccessful 

effort to stabilize. Clearly, this is not a fair treatment to two identical users with equal demands. 

Figure 4 3  shows a typical buffer distribution for PPZINKI when Random Drop is used. 

Both connections are penalized for the congestion, instead of simply the unlucky one that started 

later. Since the two connections differ only in their opening times, Random Drop should be 

able to overcome this discrepancy and allow both to attain similar performance levels. In 
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fact, a comparison of the long-term average throughputs of the two connections supports this 

hypothesis and Random Drop’s improvement over the current No Gateway Policy congestion 

control. 

4.2.1.2 Experiment 2: A LAN versus a WAN 

Computer networks generally interconnect heterogeneous systems with varying capacities and 

services. The networks are expected to conceal this heterogeneity, providing transparent reliable 

service to their users. Thus, a pair of users communicating over a cross-continental connection 

should receive a similar quality of service as a pair communicating within the same building, 

provided that their demands are equal. Anybody with some knowledge of communication, 

though, would tell you that this is nonsense. Wide area networks (WANs) are technologically 

much slower that local area networks (LANs)~. Besides their slow speeds, WANs also consist 

of concatenations of network components of mismatched speeds. These factors make them very 

susceptible to congestion. To make the problem even worse, the TCP flow and congestion 

control mechanisms intrinsically favor LANs with faster congestion detection and recovery. 

In addition to the obvious WAN problems, there are some less obvious. One such problem 

arises when two TCP connections, one running over a WAN and one over a LAN, are competing 

for the limited capacity of a shared bottleneck. Figure 4 4  demonstrates such a scenario. The 

two TCPs have similar paths except that for one hop, TCPlA is crossing a fast ethernet while 

TCP2A is crossing a slow long delay point-tepoint link. Both connections’ paths pass through 

PPLIN.1  which is the main network bottleneck. The link is not fast enough to service both 

connections and its buffers can accommodate only a maximum of 30 packets. This seems 

sufficient for TCPlA whose window consists of 15 packets, most of which are always queued up 

at the bottleneck. The nearly fixed buffer utilization of TCPlA is in contrast with the highly 

osda tory  buffer utilization of TCP2A as shown in Figure 4 5 .  The similarity between this 

figure and Figure 4 2  should be apparent since they both demonstrate the same phenomenon 

generated under different circumstances. 

Just as in the previous experiment, TCPlA gets a head start on the other connection, 

‘The speed comparisons apply to current large-scale computer networb and not to a few isolated fast linb. 
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because of its short end-bend delay, and manages to stabilize and seize a fixed portion of the 

available buffers for its entire duration. Meanwhile, TCP2A is struggling to open up its window, 

repeatedly overilowing the bottleneck’s buffers in the process. Because of its large end-to-end 

delay, TCP2A wa8 allocated a large maximum window size to improve its throughput. This 
window size is apparently two large to fit in the buffers left unoccupied by TCPIA’s packets, 

and TCP2A simply oscillates between congestion recovery and performance optimization. 

Again, Random Drop can prove useful in breaking TCPfA’s grip on the scasce resources 

and enforcing a more fair policy toward the equal-demand users. A fair treatment would require 

that both connections be penalized for the bottleneck’s congestion and thus both be considered 

when dropping packets to relieve it. This behavior is exemplified in Figure 4 6  showing the 

buffer utilization for PPLINKl in the GWf - GW2 direction when Random Drop is employed. 

The improved fairness of Random Drop results in a tripling of TCP2A’s throughput at the 

expense of 15% lower throughput for TCPIA. It should be mentioned here that even with 

this improved fairness, T C P f A  will still attain much higher throughput than TCP2A. This is 

largely due to the fact that the two connections have different end-to-end delay. The effect of 

this factor will be investigated below as one of the shortcomings of Random Drop. 

4.2.1.3 Analysb 

The common phenomenon witnessed in the previous experiment8 is sometimes referred to as the 

segregation effect. In [DKS89], it is described as a segregation of the sources into uwinners, who 

consume a large amount of bandwidth, and losers, who consume very little.” The circumstances 

in which the segregation occurs differ from one case to another, but they all describe scenarios 

in which few flows are allowed enough time to stabilize before others join in and share the 

bottleneck resources. While stabilizing, they build up a certain buffer utilization and monopolize 

it for the lengths of their durations. The reason why the buffer utilization is constant is that 

every packet that arrives at a bottleneck resource is simply replacing one that just left, and 

thus, will find an available buffer. 

The deadlock described above occurs because of a lack of randomness in the network, a 

lack of a mechanism to  break the chain of events that yields the undesirable behavior. Random 
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Drop introduces this much needed mechanism. By choosing a random packet to be dropped 

upon buffer overflow, it will become possible to break the grip of the few connections tying up 

the bottleneck's buffers, giving other unlucky connections the chance to utilize them. 

It is no question that Random Drop should lead to better performance than No Gateway 

Policy. How much better, though, is a question that requires testing Random Drop in real 

networks and observing how often do segregation effects arise. One of the important situations 

in which it could arise occurs in network environments running Telnet and FTP services con- 

currently. [DKS89] tested such a scenario and reported that the combination of a 4.3BSD+ flow 

control with No Gateway Policy 'produces fair bandwidth allocation among the FTP sources, 

but the Telnet sources are almost completely shut out." The frequency of the interaction of 

FTP and Telnet users alone might make it worthwhile to implement Random Drop. 
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Figure 41: Topology I11 
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Figure 4-2: Buffer distribution for PPXINKI in the GWI - GW2 direction using No Gateway 
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Figure 4-3: Buffer distibution for PPLINK1 in the GW1 - G W2 direction using Random Drop. 
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Figure 4-4: Topology IV 
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Figure 4-5: Buffer distribution for PPLINKI in the GWI - GW2 direction using No Gateway 
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Figure 4-6: Buffer distribution for PPLINKf in the GWf - GW2 direction using Random Drop. 
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4.2.2 Shortcomings of Random Drop 

The experiments included here aim at testing Random Drop in typical network environments 

rather than in specific scenarios, as those described in the previous section. They demon- 

strate the behavior of Random Drop in a variety of environments supporting heterogeneous 

connections. The heterogeneity differs from one experiment to another, as indicated by the 

experiments’ names, with each modeling a different aspect of a red  TCP connection. The role 

of the TCP in determining the fair allocation of network capacity will become clear as the 

experiments are analyzed. 

In contrast with the connection model of the previous experiments, the TCP connections 

here are allocated maximum window sizes large enough to insure that the window never reaches 

this static boundary. Instead, the TCP congestion and avoidance mechanisms adjust the win- 

dow size dynamically in response to network feedback about its congestion level. This insures 

that the TCPs will take full advantage of SLOW START and the congestion avoidance measures 

to optimize their performance. 

4.2.2.1 Experiment 1: Unequal End-to-End Delays 

The Internet is a collection of multi-scale networks ranging from the inter-office local area to 

the cross-continentd long-haul. Thus, the end-bend delay of a connection could be a few 

milliseconds or several seconds, depending on the propagation, transmission, and queueing 

delays across its path. Topology I1 shown in Figure 2-2 models such a realistic network. It 

supports 14 connections that are identical in every respect except for their end-to-end delays. 

The point-to-point links were assigned equal propagation and transmission delays to simplify 

the comparison of the connections’ path lengths by mostly counting the number of hops from 

source to destination3. 

The topology of Figure 2-2 has several bottleneck links due to the intersection of traffic 

at several gateways. By inspecting the paths of the connections, three main bottlenecks may 

be identified: pplink2, pplink3, and pplinkd. Figure 4-10 shows the bandwidth distribution for 

3The queueing delays vary from one link to another depending on the traffic load. 
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pplink9 in the SAC-CW - UWISC-GW direction. Even though pplinkd services the users of 6 

TCP connections, more than 60% of its capacity is utilized by tcp-ta, which incidentally haa the 

shortest end-bend delay of the six connections. In comparison to the 1-hop tcp-,?a, the other 

connections’ path lengths range from 4 to 7 hops. The bandwidth utilization shown in the figure 

is not exactly proportional to the hop count of each connection, because the queueing delays 

differ from one hop to the other. For example, the 4hop tcp-7a achieves noticeably higher 

bandwidth utilization than the &hop tcp-ba, mostly because it does not cross the bottleneck 

pplin4,  avoiding its high queueing delays. 

Apparently, the end-to-end delay of a connection greatly influences its utilization of the 

bottleneck capacity. An important question to ask here is whether tcp-ta does actually achieve 

better throughput, or it merely spends its time retransmitting the many packets dropped by 

the bottleneck in at attempt to signal it to slow down. Actually, the simulation results report 

comparable retransmission percentages aicraes all connections. Moreover, tcp2a manages to 

achieve throughput that is 5-8 times that of the other connections. In summary, t cp2a  does 

achieve better overall performance than the other connections utilizing ppZink.9, even though all 

connections service users with equal demands. Thus, Random Drop has failed to distribute the 

utilization fairly among connections with different end-to-end delay, giving preference to the 

shorter connection and allowing it to grab a sizable portion of the bottleneck capacity. 

4.2.2.2 Experiment 2: Mixed Packet Size8 

Real networke support users of varying traffic characteristics requiring different qualities of 

service. One characteristic that varies from one user to another is the transmission size. For 

example, Telnet users transmit a few bytes at a time and can fit most transmissions in small 

packets, while FTP users transfer whole files that need to be packaged in large packets. The 

effect of mixed packet si= on the fairness of Random Drop will be tested by changing the 

packet size for one of the connections in Topology I. This variation does not attempt to model 

any particular type of user, but rather to isolate the effect of packet size from other factors that 

might iduence the fairness of Random Drop. 

58 



Tcp-Sa in Topology I uses larger packets than the other connections, specifically 5 times 

larger. Again this heterogeneousness among the connections should not make a difference as 

far as the fair distribution of bottleneck capacity among them. An examination of Figure 4-20, 

though, reveals a different result. The bandwidth distribution of the US-pplink in the CA-GW 

- MA-GW direction shows an obvious domination by tcp-9u. The high utilization achieved 

by tcp-9a enables it to attain a throughput that is 3-5 times higher than that of any other 

connection at no extra retransmission cost. 

The environments used to test Random Drop here and in the previous section demonstrate 

variables that are very characteristic of real networks, namely unequal end-to-end delay and 

mixed packet sizes. So far, Random Drop has failed to provide fair allocation even in envi- 

ronments supporting well-behaved 4.3BSD+ TCP connections. This implies some fundamental 

problems with the congestion control policy, perhaps ones relating to its underlying assump 

tions. 

4.2.2.3 Experiment 3: Aggressive TCPs 

Even though the 4.3BSD+ TCP has improved greatly on the performance of previous implemen- 

tations, it is not the only one employed in the Internet. Some of the older Berkley distributions 

as well as other vendor implementations continue to be used. Fair allocation of capacity among 

users employing different TCP implementations is one the proposed potentials of Random Drop. 

The concern for fair allocation in the presence of heterogeneous TCPs stems from the 

tendency of some vendors to tailor their TCP implementations to provide the user with better 

service, disregarding the needs of others. One possible implementation will be used here to test 

the effectiveness of Random Drop in the face of such aggressive TCPs. It will be called the 

Greedy TCP to distinguish it from the well-behaved 4.3BSD+ TCP. 

The Greedy TCP combines some of the algorithms employed by other TCP implementations 

to achieve better performance. It uses the GO-BACK-N retransmission strategy of the original 

4.2BSD TCP and the retransmit timeout calculation of the 4.3BSD+ TCP. Through the frequent 

retransmissions generated by theses algorithms, the Greedy TCP attempts to squeeze as much 
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data as possible through the bottleneck, in the process exerting a very heavy load on the 

net work. 

Tcp-loa in Topology I waa modified to run a Greedy TCP implementation, while the other 

connections remain to be 4.3BSD+ TCPs. Figure 4-23 illustrates the bandwidth distribution 

for the US-pplink in the MA-GW - CA-GW direction and Table 4.1 shows the throughputs 

and retransmission percentages for a l l  ten connections sharing the link. Despite the equal 

demands of the five connections sharing the US-pplink in that direction, the Greedy tcp-lUa 

captures about 50% of the bandwidth. Moreover, even though 30% of its bandwidth utilization 

is wasted on retransmissions, the Greedy TCP achieves twice the throughput its user is entitled 

to. Of course in the process, it hurts the other connections greatly. Besides increasing their 

retransmission percentages, it decreases their bandwidth utilizations to half of their fair shares. 

The Greedy TCP might sound too aggressive and misbehaving. Alternatively, consider 

modifying the 4.3BSD+ TCP to "use a higher gain" when doing SLOW START congestion 

avoidance [Man89]. The resulting TCP would not generate as many retransmissions aa the 

Greedy TCP, but it will open its window faster than the lower-gain TCPs and thus have 

a head start on the others. Actually this effect would be very similar to that seen in the 

previous experiments. This similarity is not accidental but is rather an indication some common 

shortcomings of Random Drop, aa will be explained shortly. 
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4.2.2.4 Analysis 

The previous experiments have described realistic network environments, in which Random 

Drop has failed to provide the necessary fair allocation of bottleneck capacity among equal- 

demand users. This failure defies the common intuition about the inherent fairness of Random 

Drop and prompts a review of the reasons that led to it. It is hoped that they can shed some 

light as to where the assumptions on which Random Drop is based have gone wrong. The 

section concludes by a comparison between the behavior of Random Drop and No Gateway 

Policy in the above network environments to observe any possible merits that the former might 

have over the later. 

W h y  Random Drop has Failed? 

From the experimental results, three major causes of the failure may be outlined. 

1. Random Drop chooses packets to be dropped by inspecting the buffer distribution only 

at the time of overflow, disregarding all previous history. Unfortunately, this does not 

prove to be a good decision. A comparison between the average buffer distribution upon 

overflow and the average bandwidth distribution over all times (Figures 4 1 1  and 4-12) 

show an obvious disparity between them'. Thus, the resource distribution that Random 

Drop sees is not the actual one achieved. 

By nature, TCP/IP networks are unstable and are subject to various packet clustering 

phenomena, as described in Chapter 3. Over time, the buffer utilization at a bottle- 

neck resource is likely to oscillate heavily between congestion recovery and performance 

optimization (Figure 4-13). The periods between buffer overflow events are usually char- 

acterized by different flow patterns than those represented by the buffer contents upon 

overflow. For example, connections with short round-trip delays (i.e.tcp-%a in Topology 

11) recover faster from congestion than connections with longer delay (i.e.tcp-lda), Fig- 

ures 4 7  and 48.  The recovery period, during which such phenomenon manifests itself, 

occurs following buffer overflow during intervals characterized by low buffer utilization 

(Figure 49). Thus, disregarding the buffer distribution between overflow events will lead 

The disparity between the two graphs is due to two combined ei€ecta: different end-to-end delays; and 
different packet shea (acknowledgements have zero length). The two wil l  be isolated below in the discussion of 
the assumptions of Random Drop. 

1 
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Random Drop to make inaccurate estimates of the average buffer distribution over all 

times. 

2. Since packets of different sizes use equal-size buffers, they will see equal drop probabilities, 

even though, they utilize bandwidth differently. In the Mixed Packet Sizes experiment, 

tcp-ga, which uses much larger packets than the other connections, attains a very average 

buffer utilization while using up more than 40% of the total bandwidth (Figures 4 1 8  

and 4-19). Thus, Random Drop will unfairly favor the connections with larger packets, 

subjecting them to fewer packet losses upon congestion. 

3. When relieving congestion, Random Drop causes different connections to lose different 

numbers of packets depending on their buffer utilizations upon congestion. Nonetheless, 

they all have to recover, and the recovery effort is fairly similar, almost regardless of how 

much was lost. This is due to the fact that the TCP congestion recovery overhead is 

far higher than the average retransmission cost of a packet. The overhead consists of 

the timeout period plus the time spent SLOW STARTing following a packet loss, which 

is usually several round-trips of substantial propagation delay. Thus, the fact that a 

connection lost something is much more important than how much was actually lost. 

The connections in Topology IV compete for the capacity of the bottleneck PPZINKI5. 

Despite their equal demands, they exert different loads on the network depending on 

their end-to-end delays. With Random Drop gateway congestion control, TCPlA loses 

25 packets in 13 buffer overflow events; whereas, TCP2A, with the much higher end-to-end 

delay, loses 8 packets within 8 buffer overflow periods. Even though the faster connection 

is being penalized more heavily (losing more packets), it is losing them in fewer congestion 

(buffer overflow) periods, and thus SLOW STARTing less often. One way to think of this 

is that the higher is the number of SLOW STARTS / number packete lost ratio for a 

connection, the more often it gets hit for the same congestion contribution. 

What is Wrong with the Assumptions? 

There are two main assumptions underlying Random Drop: the buffer distribution of a 

'Both connections are aasumed to be using very large maximum window h. 
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resource is proportional to its bandwidth distribution; and the drop probability is proportional 

to the average user flow rate. 

Whether the buffer distribution is actually representative of the bandwidth distribution or 

not is not the question, since Random Drop is based on the buffer distribution upon overflow not 

over d times. In the previous section, it was shown that the buffer distribution upon overflow 

does not necessarily agree with the average bandwidth distribution achieved. One reason for this 

is that data and acknowledgement packets occupy equal-size buffers and get treated similarly 

by Random Drop, even though acknowledgements consume negligible bandwidth compared to 

data. 

Another reason follows from the difference in congestion recovery time between different 

connections depending on their end-to-end delay. Recall that shorter connections recover faster, 

getting a head start over other connections which enables them to squeeze more data through 

over time. Topology I1 was run without any of the connections passing through pplink3 in the 

UWISC-GW - SAC-GW direction being active, in order to eliminate any acknowledgements 

flowing in the opposite direction and consuming part of the available buffers. Figures 4-15 

and 414 illustrate the average buffer distribution upon overflow and the average bandwidth 

distribution for pplink3. The discrepancy between the two distributions reflects the bandwidth 

gain achieved by a connection during periods of no congestion, and thus concealed from Random 

Drop. For example, the 1-hop TCP-2A achieves 11 times the bandwidth utilization of the &hop 

TCP-SA, whereas it consumes only 8 times its buffer capacity during overflow periods when 

Random Drop is activated. 

Even if we did amume that the buffer distribution upon overflow accurately represents the 

average bandwidth distribution, the Random Drop probability does not seem to be proportional 

to the average user flow rate. For one thing, the TCP flow control alters the effective user load 

on the network. The TCP flow pattern is a product of the user data arrival function, the TCP 

maximum window size, and the TCP flow control and avoidance schemes. To simplify the 

analysis, the users are equal-demand file transfers, and the connections use equal maximum 

window sizes, large enough 80 that the flow is controlled only by the TCP dynamic window 

adjustment. Thus, the TCP congestion control and avoidance mechanisms solely determine the 
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user flow rate into the network according to the following formula 

average TCP data transmission rate = 
averaae window size x averaae retransmission rate 

average round trip delay 

The simulation experiments, conducted above, illustrate the effect of varying any of these three 

parameters on the user flow rate and the associated bandwidth utilization achieved. 

In the first experiment, the various end-to-end delays lead to different average window sizes, 

due to the dynamic adjustment of the window over varying round-trip times. This results in 

shorter connections having larger average window sizes and correspondingly faster transmission 

rates (Figures 4-7 and 48). Another way of increasing the average window size is illustrated 

by the Mixed Packet Sizes experiment. Since the exponential gain of SLOW START is the 

same across all connections, using larger size packets implies a larger average window size and 

a correspondingly higher TCP data flow rate, Figures 416 and 417. 

Up until now, the variables used to control the TCP flow rate affected mostly the trans- 

mission rate of actual user data. In contrast, the TCP flow can consist of a large number of 

retransmissions. Even though retransmissions are not usually desirable, they may be used by 

an aggressive TCP to break the Random Drop policy, since the more duplicate copies pass 

through a bottleneck, the higher is the probability of at least one of them getting across. The 

Greedy TCP uses this approach to maximize its throughput. Figure 4-22 illustrates the TCP 

flow pattern for the Greedy tcp-lUu, and the speed of its transmission compared to any other 

connection such as tcp-8a, shown in Figure 421. The results of this experiment are alarm- 

ing, since they demonstrate that 'it pays to be bad". By behaving aggressively, tcplUu does 

manage to increase its throughput appreciably, in the process hurting the more well-behaved 

4.3BSD+ TCPs greatly. 

The results of the previous experiments have one common denominator, by increasing the 

data flow rate into the network, more bandwidth can be achieved and correspondingly higher 

throughput. A f a t  connection might have more buffered packets than a slow connection. 

However, since al l  packets have equal probability of being dropped, more packets belonging to 

the fast connection will escape the Random Drop. As expressed more concisely by a colleague of 
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mine [Zha89], if any buffered packet may be dropped with probability p, then two connections 

with arrival rates rl  and r2 at the bottleneck will attain throughputs of (1 - p ) q  and (1 - p)rz .  

Thus, the ratio of the achieved throughputs is equivalent to the ratio of arrival speeds, and 

Random Drop fails to penalize the faster connection. 

This shortcoming of Random Drop will be evident in any network environment character- 

ized by flows of various speeds. In the experiments conducted above, the TCP flow control 

mechanism was responsible for the differences in flow rates. Heterogeneous users with different 

demands can also produce flow rate variations, although they are limited by the TCP flow 

control mechanisms. Thus, whether the user or the TCP is the limiting factor, the end's flow 

rate into the network will decide how much bandwidth it will get6. 

4.2.2.8 Comparison with No Gateway Policy 

Besides the proposed merits of Random Drop, its appeal follows from an intuitively better 

behavior than that of No Gateway Policy. The term 'better' here refers to the fairness of the 

dropping policy. Due to the packet clustering phenomena seen in network traffic, dropping 

packets in FIFO fashion may result in unfair penalization of a few connections, that might 

not even be contributing to congestion. On the other hand, using Random Drop, any such 

unfairness would be eliminated. 

The performance of gateway congestion control using No Gateway Policy is illustrated 

for the network environments of the above experiments in Figures 424 ,  425, and 426. In 
comparison to their Random Drop counterparts, these figures do not demonstrate substantial 

long-term differences. Instead, networks employing No Gateway Policy congestion control seem 

to exhibit more dynamic short-term behavior with larger variations in bandwidth utilization. 

These variations are a result of the sensitivity of the dropping policy to the Local Packet 

Clustering Effect, described in Chapter 3. 

Due to the SLOW START TCP retransmission strategy, the packets of a connection will 

'This ir the r e a n  why it waa reanable to simplify the andy& by assuming equd-demand usem. The flow 
rate variations provided by the TCP were sufficient to demonstrate the fsilnre of Random Drop to provide the 
required fairness. 
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exhibit a clustering effect during the exponential window sizing stage of the congestion control 

policy. Such clusters will increase the immediate load on an encountered bottleneck. Fur- 

thermore, If the bottleneck’s queues are long enough, the clustered packets will cause them to 

overflow and the resource to get congested. In such a situation, the connection, to which the 

packet cluster belongs, will receive most of the penality for the congestion, even if its buffer 

utilization is within its fair share. Due to the randomness of network traffic, the connection 

should not continue to be unlucky for long and should resume a stable transmission shortly. This 
short-term unfairness experienced by the TCP connections manifests itself in the fluctuations 

in bandwidth utilization seen in the No Gateway Policy bandwidth distribution figures. 

Since buffer overflow is fairly common in heavily utilized network environments, the tem- 

porary unfairness associated with No Gateway Policy will occur frequently. Nevertheless, it 

will not be aimed at any particular connection but will rather target different connections in 

a fairly random fashion. The combined effect will result in long-term performance similar to 

that of Random Drop. Figure 427, for example, demonstrates the average bandwidth distribu- 

tion achieved by the 5 identical connections sharing pplink,? in MA-GW - CA-GW direction in 

Topology I. Despite some mild fluctuations in the individual utilizations, there is an apparent 

identical sharing of the bottleneck link. 

In assessing the improvement in fair capacity distribution that could be achieved by Random 

Drop over No Gateway Policy, a comparison of the characteristic traffic patterns susceptible 

to drop is in order. Random Drop attempts to identify aggressive users and penalize them by 

sampling the buffer contents statistically. In doing so, it is assuming that the buffer contents 

represent the incoming packet traffic fairly well. Even though this was shown to be an inaccu- 

rate assumption, the range of packets being considered for drop usually spans most connections. 

On the other hand, using No Gateway Policy, the distribution of packets overflowing the bot- 

tleneck’s buffers serves as a sample of the overall incoming traffic stream. The question here is 

how representative is this sample of the actual user loads imposed on the network. 

Besides the Local Packet Clustering effect apparent during SLOW STARTS, the TCP/IP 

networks do not seem to exhibit any other phenomena that could lead to substantial clustering 

of packets belonging to one TCP connection. Moreover, as was explained in Chapter 3, the 

66 



processing and queueing delays associated with network resources serve to space out clustered 

packets after each round trip. Since LPC is sustained by SLOW START, the effect will dis- 

appear as soon as the dynamic window sizing brings the connection to a stable flow pattern. 

The dispersion effect of the network resources along with the overlapping of traffic of different 

connections at cross points injects enough randomness in network traffic to make the drop data 

sample of No Gateway Policy fairly characteristic. This effect accounts for the similarity in the 

long-term behavior observed between Random Drop and No Gateway Policy. Thus, the perfor- 

mance analysis of Random Drop, described above, can also be applied to No Gateway Policy 

congestion control, yielding similar results of failure to provide the necessary fair allocation of 

bottleneck capacity. 
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4.2.2.6 Appendix A: Experimentation Figures 

The following section contains the experimentation figures obtained through network simulation 

and used to illustrate the behavior of Random Drop and assess its performance. The figures 

are grouped according to the experiment they represent, not according to the order in which 

they are referenced. Since they are referred to repeatedly throughout the text, this represents 

a simpler and more logical classification. 
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Experiment 1: Unequal End-to-End Delays 
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Figure 4-7: Sender sequence number logging for tcp-&a. 
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Figure 4 8 :  Sender sequence number logging for tcp-I&. 
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Figure 4-12: Average bandwidth distribution for pplink3 in the SAC-GW- UWI9C-GWdirec- 
tion. 
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Figure 413: Long-term buffer distribution for ppZinkSin the SAC-GW- UWISC-GWdirection. 
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Figure 4-16: Sender sequence number logging for tcp-7u. 
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Figure 4-17: Sender sequence number logging for tcp-9a. 
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Figure 4-18: Buffer distribution for pplinkd in the CA-GW- MA-GW direction. 
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Figure 4-20: Smoothed bandwidth dlstriDunon lor pprzrrm LLI uc w/l-u r r  
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Figure 4-21: Sender sequence number logging for tcp-8a. 
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Figure 4-22: Sender sequence number logging for tcp-loa. 

84 



\ \  \ \  

- I 
I 0 n ., P> (Y 

i 
0 

I I I 
0 

1 
0 0 0 

I 0 OD I- 

l 
0 

1 

Figure 4-23: Smoothed bandwidth distribution for US-pplink in the MA-GW - CA-GW direc- 
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1 Connection Name I Retmnsmission Percentage I Throughput (Kbytes/sec) 1 

tcp3a 
tcp4a 
tcp5a 

tcp7a 

tcp9a 
tco1na 

tcp6a 

tcp8a 

I tcpla I 14 I 429 
tcp2a 29 1837 i 

4 1405 
11 710 
1 1703 

19 353 
2 1679 
7 975 
0 541 

35 2742 

Table 4.1: Throughputs and retransmission percentages of TCP connections. 
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Figure 4-25: Smoothed bandwidth distribution for US-pplink in the CA-GW - MA-GW direc- 
tion. 
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Figure 4-26: Smoothed bandwidth distribution for US-pplink in the MA-GW - CA-GW direc- 
tion. 
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Figure 4-27: Smoothed bandwidth distribution for US-pplink in the MA-GW - CA-GW direc- 
tion. 
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Chapter 5 

Early Random Drop 

The strong belief in the fairness of Random Drop has inspired a proposal for its modification 

to perform congestion avoidance functions aa well as congestion control. Instead of merely 

applying the dropping policy upon buffer overflow to relieve and signal congestion, it can also 

be applied prior to that to indicate its potential occurrence. At some appropriately chosen drop 

level, Random Drop is applied with a drop probability that reflects the rate of queue growth. 

The previous chapter has demonstrated some of the shortcomings of Random Drop, several 

of which seem to be inherent to the dropping policy itself. In this chapter, Early Random Drop 

will be tested for its effectiveness aa a congestion avoidance mechanism, a8 well as for its ability 

to overcome some of the failures of Random Drop. 

5.1 Functionality 

Early Random Drop is intended to act aa a congestion avoidance mechanism that foresees 

imminent congestion and takes measures to avoid it. The mechanism consists of three functions: 

predicting that congestion will soon occur, identifying the flows contributing to it, and signaling 

them to slow down. The last two functions are to be carried out by simple Random Drop applied 

early upon predicting congestion and before it actually occurs. 

Early Random Drop predicts congestion of a resource by monitoring the length of the 

packet queue awaiting service and observing its growth pattern. Since traffic fluctuations are 
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fairly normal in a dynamic network environment, those of reasonable magnitude should be 

safely accommodated and not be falsely mistaken to signal impendent congestion. For this 

reason, Early Random Drop uses a Drop Level parameter that defines the region of safe traffic 

fluctuations which are not likely to lead to congestion. 

The queue growth pattern provides different signs of approaching congestion, which are 

then weighed according to their importance. The weight is dictated by the Drop Probability 

parameter, which reflects how strongly Early Random Drop believes in the congestion indica- 

tions. Upon exceeding the Drop Level, the queue growth pattern is translated into a congestion 

prediction and Random Drop is applied to the contents of the queue with the Drop Probability. 

Expressed more concisely, 

IF queue-length > Drop Level 

THEN IF get-random() < Drop Probability 

THEN drop(packet). 

One crude way of predicting congestion is to simply ignore the growth pattern beyond the 

Drop Level and consider all queue activity from there on to indicate imminent congestion by 

the same amount and thus be weighed similarly using one uniform Drop Probability. Even 

though other more refined predictions of congestion exist ', this one will suffice to analyze some 

of the important aspects of Early Random Drop and assess its potential performance. 

5.2 Objectives 

Just as in simple Random Drop, Early Random Drop should conform to the performance 

criteria of providing fair service among network users while achieving good overall network 

performance. The previous chapter illustrated how Random Drop has failed to meet these 

performance criteria on several accounts. There is some reason to believe that Early Random 

Drop might be able to do better in some situations due to the head start it gets to avoid 

congestion. 

'One euggested way to weigh the congestion indications provided by the queue growth pattern in to use a 
Drop Probability that in directly proportional to the queue length. 
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Because of its early application, Early Random Drop could have a better chance of targeting 

only the aggressive users than Random Drop. Since Random Drop is applied upon buffer 

overflow, the total packet drop rate is usually high enough to cause many connections to lose at 

least one packet. On the other hand, Early Random Drop discards packets selectively to signal 

congestion, and due to its head start, is not facing the pressure of limited buffering capacity. 

Thus, the early application of Random Drop with the Drop Probability should work better to 

identify the misbehaved users while protecting the well-behaved ones. 

Recall that one of the important problems that TCP/IP networks suffer from is the packet 

clustering effects, particularly Lossy Global Packet Clustering, which can result in heavy oscil- 

lations and packet losses. Lossy GPC has a synchronizing effect on network flows because the 

gateway congestion control mechanism usually hits too many flows when relieving congestion, 

including many well-behaved ones. If Early Random Drop succeeds in identifying misbehaved 

users accurately, then it will not only improve the fairness of the service provided to the indi- 

vidual flows, but it will also lessen their global synchronization following each congestion event. 

This would be a very important accomplishment, as it would increase the network throughput, 

decrease the queueing delays at the bottlenecks, and reduce packet losses, resulting in better 

overall network service. 

Lastly, remember that Early Random Drop is a congestion avoidance mechanism. If it 

actually succeeds in predicting congestion accurately, it can avoid its drastic effects and slow 

the responsible flows before they transmit more data into the network than it can handle, 

thus minimizing their IOBS~S. This and the above conjectures of the behavior and performance 

of Early Random Drop sound very promising if they can actually be verified. This chapter 

attempts to do that partly through simulation and partly by showing some of the behavioral 

similarities between Random Drop and Early Random Drop, reaffirming some of the conclusions 

of the previous chapter for Early Random Drop. 
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5.3 Analysis 

5.3.1 How to Choose the Drop Level? 

The Drop Level defines the region of safe traffic fluctuations. More importantly, it also specifies 

how much time is needed to alert the aggressive users of the congestion and for them to slow 

down. Thus, the value of the Drop Level should be chosen small enough to allow the congestion 

sources time to respond before the buffers overflow. How small depends on the largest end-to- 

end delay of a user, which determines its response time to the congestion signal. Unfortunately, 

each user’s round-trip delay is different; therefore, the Drop Level can not be k e d  and is 

rather dependent on the largest end-to-end delay among the aggressive users contributing to 

the congestion. The Drop Level can not simply be set to a small value, since that would 

cause false congestion panic and unnecessary losses. The gateway must be able to dynamically 

readjust the value of the Drop Level depending on the current network traffic. There is no 
known algorithm yet to achieve this dynamic adjustment. 

5.3.2 How to Choose the Drop Probability? 

The Drop Probability reflects how much importance is attached to a particular congestion sign 

and how much emphasis is put on identifying the congestion contributers. Too large a value of 

the Drop Probability will generate a panic and end up alerting too many users to slow down, 

even though there is enough capacity to service their current demands. Likewise, too small a 

value will not generate enough interest in the congestion prediction and will fail to properly alert 

the contributers, resulting in buffer overflow and total resource congestion. Thus, the value of 

the Drop Probability must be chosen carefully, large enough to identify the misbehaved users 

and small enough to protect the well-behaved ones. Since Early Random Drop is a stateless 

scheme that assumes a connectionless network service, it does not know how many flows are 

using up the buffers and how many of those are actually being aggressive. Unfortunately, the 

Drop Probability must be adjusted dynamically depending on those parameters, and without 

explicit knowledge of them. An algorithm that can accomplish this must first be developed if 

Early Random Drop is to be used effectively. 
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5.3.3 Performance Assessment 

The past two sections both lead to one conclusion, Early Random Drop could prove to be an 

effective gateway congestion control policy provided that algorithms for accurate calculation 

of the Drop Level and Drop Probability can be found. The development of such algorithms 

is beyond the scope of this thesis and will probably require extensive analytical modeling of 

the traffic flow patterns. Instead, a crude implementation of Early Random Drop will be used 

to demonstrate at least some of its potential strengths. The obtained results should provide 

a lower bound on its performance, providing some basis for a rough comparison with Random 

Drop. 

Our implementation of Early Random Drop utilizes a fixed Drop Level which is 75% of the 

total number of available buffers. The Drop Probability was tailored for the particular network 

configuration used in the simulation experiments. This is a fixed probability of .02, which is not 

necessarily the most suitable for the configuration but is sufficient to illustrate the important 

behavioral aspects of Early Random Drop. 

The performance of Early Random Drop will be demonstrated in Topology 11 with all 

connections passing through ppZink9 in the UWISC-GW - SAC-GW direction closed, which 

eliminates any acknowledgements flowing in the opposite direction and consuming part of the 

available buffers. Since Random Drop and Early Random Drop use the same dropping policy, 

they both suffer from the discrepancy between bandwidth utilization and buffer utilization upon 

overflow achieved by packets of different sizes. Thus, removing the effect of mixed packet sizes 

will make it easier to observe any performance enhancements introduced by Early Random 

Drop. 

The buffer distribution of ppZink9, Figure 5-1, still demonstrates the oscillatory character 

familiar to lossy overloaded network environments. The amplitude of the oscillations, though, 

seems to have lessened, pointing to some new stability in the network. This stability arises 

from an improved precision in distinguishing aggressive users Erom well-behaved ones and in- 

flicting congestion penality appropriately. Unfortunately, this precision is not perfect and the 

inaccuracies associated with the statistical aspect of Early Random Drop could easily disrupt 
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the stability of the network. Figure 5-2 shows that Early Random Drop succeeds in maintain- 

ing the stability for 4 consecutive oscillation periods by accurately identifying tcp-2u to be the 

aggressive user and signaling it to slow down. During the fifth queue peak, though, it fails to 

detect early enough that tcp-7u has also exceeded its fair share of the capacity, causing buffer 

overflow and congesting ppZink3. Buffer overflow is followed by a deterioration of the overall 

performance, which continues until the network manages to regain its stability. 

The bandwidth distribution achieved by Early Random Drop, Figure 5 3 ,  generally demon- 

strates a more fair allocation of resources than that of Random Drop, Figure 4-14. Even though 

Figure 5-3 shows only a short-term view of the bandwidth distribution, it illustrates the network 

performance when Early Random Drop succeeds and when it fails and defaults to Random Drop. 

Moreover, a comparison of the throughputs and retransmission percentages attained using the 

two congestion control strategies, Tables 5.1 and 5.2, supports the performance enhancements 

achieved by Early Random Drop. 

The favorable results observed in this experiment using simply a crude implementation of 

Early Random Drop should encourage further reeearch on the topic, particular better algorithms 

for selecting the best values of the Drop Level and Drop Probability dynamically. It will not be 

possible to know how well can Early Random Drop perform until such algorithms are developed. 

At that time, the benefits of its implementation will have to be weighed against the overhead 

required, resulting in an assessment of the actual value of its application. 

96 



2 
5 

Figure 5-1: Buffer distribuLm for pplinkd in the SAC-G W - UWISC-GW direction. 
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Figure 5-2: Packet drop distribution for pplink3 in the SAC-GW - UWISC-GW direction. 
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Figure 5-3: Smoothed bandwidth distribution fa 
tion. 
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Connection Name 
tcp2a 
tcp3a 
tcp5a 
tco7a 

Retmnsmission Percentage Throughput (Kbytes/sec) 
1 4439 
4 396 
5 371 
2 760 

Table 5.1: Average throughputs and retransmission percentages of TCP connections using 
Random Drop. 

tcp9a 
tcpl4a 

I Connection Name I Retrnnemission Percentaae I ThmuahDut fKbrrtes/eec) I 

I 
2 528 
6 367 

tcp2a 1 
tcp3a 2 

I tcD5a I 4 I 411 I 

3267 
619 

tcp7a 
tcp9a 
tcDl4a 

Table 5.2: Average throughputs and retransmission percentages of TCP connections using Early 
Random Drop. 

0 1534 
0 447 
2 617 

5.3.4 Comparison with Random Drop 

One of the shortcominga of Random Drop observed in the previous chapter is its limited view 

of the traffic activity at a bottleneck resource. Random Drop sees the traffic distribution only 

upon buffer overflow and makes its drop decisions based on that, ignoring all previous history. 

Early Random Drop has a broader view of the traffic distribution, as it has to observe it early 

enough to prevent it from leading to congestion. This view is not complete, since it misses 

periods when the queue length is below the Drop Level, but it is definitely better than that of 

Random Drop. 

A key issue of the gateway congestion control strategies discussed throughout this thesis 

has been the ability to distinguish between misbehaved and well-behaved users. Both No 

Gateway Policy and Random Drop have failed to protect good users when dropping packets to 

relieve congestion. On the average, the probability of dropping at least one packet from each 
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good connection was too high, because the of the high drop rate required to relieve the total 

congestion resulting from buffer overflow. Early Random Drop avoids the excessive packet loss 

by monitoring the queue early enough to try to prevent it from overflowing. The early start 

enables it to detect aggressive users more carefully and accurately, rather than panicing and 

alarming everybody. Of course, how much it succeeds depends on how well suited are the Drop 

Level and Drop Probability to the current network traffic distribution. 

The one common shortcoming of Random Drop and Early Random Drop remains to be 

the inability to distinguish among packets of different sizes, since both use the same random 

dropping policy. Actually, any gateway congestion control policy based on buffer distribution 

will suffer from this problem, as long as packets of ad sizes continue to be allocated equal- 

size buffers. Thus, if such policies are to be used, a new buffer allocation scheme is needed 

to distribute available buffers among packets proportionally depending on the bandwidth they 

consume. 
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Chapter 6 

Conclusions 

The problem of congestion control in computer networks is, by no means, new to the research 

community. Lately, though, the growing demand on the Internet has prompted the need for a 

new gateway congestion control policy, that providee a quick easy solution to the problem at 

hand. Random Drop and Early Random Drop have evolved out of efforts to satisfy this need. 

This chapter will attempt to summarize the thesis findings regarding the performance of 

Random Drop as a congestion control policy and Early Random Drop as a congestion avoidance 

scheme. The results of the performance analysis will be used to draw up some guidelines that 

should be observed in future TCP/IP congestion control policies. While such policies continue 

to improve the performance of the Internet, they will probably be around only for a short time. 

The growing high-speed communication technology has already started to guide the network 

architecture into new directions. This chapter will conclude with a discussion of some of the 

evolving network models and how they will affect future congestion control protocols. 

6.1 Summary of Thesis Results 

Congestion in TCP/IP networks is a product of several packet clustering phenomena. The 

most prominent of these is Lossy Global Packet Clustering which occurs in heavily loaded 

network environments and repeats regularly, resulting in oscillatory traffic patterns. The TCP 

SLOW START retransmission strategy leads to the oscillatory flow pattern among the TCP 

packets, but the gateway congestion control scheme is what actually intensifies the oscillations 
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by synchronizing the various TCP flows. 

The gateway drops packets to relieve its congestion and signal the sources to slow down. 

Unfortunately, it drops them indiscriminately, causing too many connections to lose, regardless 

of whether or not they are responsible for the congestion. The blind drop results in unfair 

service to the individual users and to the synchronization of network flows which degrades the 

overall network performance. 

Random Drop attempts to improve the dropping distribution by basing it on the buffer 

distribution upon overflow. In some situations in which a few flows grab a portion of the 

available buffers indefinitely, Random Drop works well to break their grip on the bottleneck 

resources, giving everybody a fair chance to utilize them. In general, though, Random Drop has 

not performed much better than the earlier No Gateway Policy approach. It is still vulnerable 

to the performance biases of TCP/JP networks, such a8 short end-taend delay, large packets, 

or even plain aggressive misbehavior. 

One of the most important reasons for the failure of Random Drop is its inability to accu- 

rately identify aggressive users without hurting good users in the process. When the resource 

is already congested, packets are dropped more to relieve the congestion than to signal it. The 

drop rate is usually too high, as is the probability of falsely hitting a good user. 

Early Random Drop improves on this aspect of the drop policy by separating congestion 

control from congestion signaling. Actually, it attempts to avoid congestion control by signaling 

the responsible sources early enough to prevent it from occurring. If it fails, the policy simply 

defaults to Random Drop. Since the identification of aggressive users is not done under the 

pressure of scarce buffers, the drop rate can be controlled and adjusted appropriately to pro- 

tect the good users. The strong dynamics of computer networks, though, require the dynamic 

adjustment of this rate, as well as how early the policy should be applied to prevent buffer 

overflow. Algorithms that can perform this adjustment under widely varying traffic distribu- 

tions are not necessarily trivial, and the success of Early Random Drop is conditional on their 

existence. 
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6.2 Future Trends in Congestion Control 

6.2.1 Stateless Congestion Control 

Unfortunately, the results of this thesis put us back almost where we started. A more powerful 

congestion control policy is still needed to handle the vastly growing Internet demand. There 

are several directions to pursue depending on the overhead that can be tolerated, and like the 

other things in life, the more effective the congestion control policy, the more expensive is its 

overhead. 

The stateless approach has the advantages of low overhead and ease of implementation, but 

it usually bases its decisions on mere intelligent guesses about the state of the network. As this 

thesis have already shown, such algorithms might seem more intuitively sound than they really 

are. Even though Random Drop have not proven a total success, though, Early Random Drop 

demonstrated some promising results. Thus, one solution to the Internet problem is to pursue 

a better implementation of Early Random Drop by developing algorithms for the dynamic 

adjustment of the Drop Level and the Drop Probability to suit the current traffic distribution 

of the network. 

Any congestion control policy that ie to work effectively should be able to identify aggressive 

or misbehaved users accurately, whether implicitly or explicitly. Another statistical method that 

attempts to protect good users and reduce global synchronization works by randomly picking 

on one connection for each congestion period. Since a single connection is to receive the entire 

congestion penalty and the big responsibility of congestion relief, its choice is very important 

and must be done carefully. For example, instead of simply selecting the connection that owns a 

packet chosen randomly from the buffer, taking a random sample of several packets and choosing 

the connection that owns the largest number might result in better performance. Another issue 

is the definition of a congestion period. It seems natural to measure the congestion period by 

the time needed for the queue to demonstrate a response to the biased drop, with a margin 

of error in case the choice WBB inaccurate hurting a good user. Unfortunately, the congestion 

period should be adjusted dynamically, if it is to lead to effective congestion control. The early 

application of this policy might also prove valuable in detecting congestion earlier and slowing 
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the responsible connections before they lose too many packets. 

The seemingly complex algorithms required for the dynamic adjustment of the parameters 

of stateless congestion control policies are mainly due to the implicit decision making approach. 

The expensive overhead of explicit policies is traded for the complexity of implicit policies. Up 

until now, stateless protocols have been more popular due to the connectionless character of 

TCP/IP networks. The next section, though, demonstrates an evolving trend favoring state- 

oriented protocols, both in current and future networks. 

6.2.2 State-Oriented Congestion Control 

The introduction of the stateless Random Drop haa been paralleled by the development of 

a class of state-oriented congestion control policies known as Fair Queueing [DKS89, DH891. 

These policies are baaed on the explicit distribution of buffering capacity among competing 

connections. Their popularity follows from their explicit character, which guarantees each 

connection its fair share of the capacity, while allowing it to compete for any surplus unused 

bandwidth. Fair Queueing accomplishes this by maintaining complete state information about 

the demands and actual loads of all connections using the resource. This approach requires 

knowledge of the connections’ establishment and clearing, whether implicitly or explicitly, and 

is actually better suited for connection- oriented network services. 

The success and accuracy of state-oriented congestion control has encouraged a trend to- 

wards connection-oriented network services. Moreover, the growing variety of network services 

and the popularity of the Integrated Services Data Network (ISDN) as a future networking s e  

lution, will require the provision of various qualities of service depending on the user demand. 

The network must explicitly know about the user’s service requirements, if it is to satisfy them 

accurately, Thus, some sort of connection-oriented service is required for any future network 

model, that is to cope successfully with the growing communication needs. Besides the familiar 

connection-oriented Virtual Circuits (VCs), the idea of a new network service that combines 

the flexibility of datagrams and the knowledge of VCs is also emerging [Zha89]. This direction 

of network research is currently being pursued by the members of my group here at MIT. 

Since future networks will probably be connection-oriented, it will probably prove worth- 

105 



while to direct the research efforts towards developing congestion control policies relying on 

some knowledge of the individual user demands. Such policies could provide efficient solutions 

to the current TCP/IP congestion problems, as well as valuable guidelines for future congestion 

control protocols, and it is never too early to start on such efforts. 
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